Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 bies9mwWlY7srbdv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-20 16:21:23.982392+00:00 1
2 h7AnhVaYlbG7GmrN0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-20 16:21:23.975189+00:00 1
1 P4684TH5GuNoBI1U0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-20 16:21:23.650055+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-20 16:21:21 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7f3d369bd890>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-20 16:21:21 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-20 16:21:21 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-20 16:21:21 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 P4684TH5GuNoBI1U0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-20 16:21:23.650055+00:00 1
2 h7AnhVaYlbG7GmrN0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-20 16:21:23.975189+00:00 1
3 bies9mwWlY7srbdv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-20 16:21:23.982392+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 h7AnhVaYlbG7GmrN0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-20 16:21:23.975189+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
1 hjGNl5mrTIa60000 None True Rank IgG2 intestine IgG IgG2. None None notebook None None None None None 2024-10-20 16:21:25.594648+00:00 1
9 7mXHDYQxKoH30000 None True Epsilon Cell Outer hair cells rank IgA intesti... None None notebook None None None None None 2024-10-20 16:21:25.595203+00:00 1
11 5MwQR4eEhnM80000 None True Intestine IgG2 IgG Muscles of breathing. None None notebook None None None None None 2024-10-20 16:21:25.595324+00:00 1
28 dsTP1VijHSWC0000 None True Interstitium investigate intestine Outer hair ... None None notebook None None None None None 2024-10-20 16:21:25.596375+00:00 1
58 8hbd4EFQkNBC0000 None True Visualize visualize Granulosa lutein cells int... None None notebook None None None None None 2024-10-20 16:21:25.598212+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 P4684TH5GuNoBI1U0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-20 16:21:23.650055+00:00 1
2 h7AnhVaYlbG7GmrN0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-20 16:21:23.975189+00:00 1
3 bies9mwWlY7srbdv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-20 16:21:23.982392+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 P4684TH5GuNoBI1U0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-20 16:21:23.650055+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 h7AnhVaYlbG7GmrN0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-20 16:21:23.975189+00:00 1
3 bies9mwWlY7srbdv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-20 16:21:23.982392+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 P4684TH5GuNoBI1U0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-20 16:21:23.650055+00:00 1
3 bies9mwWlY7srbdv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-20 16:21:23.982392+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 bies9mwWlY7srbdv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-20 16:21:23.982392+00:00 1
2 h7AnhVaYlbG7GmrN0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-20 16:21:23.975189+00:00 1
1 P4684TH5GuNoBI1U0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-20 16:21:23.650055+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
3 qKcZNM9rFr2q0000 None True Research Pancreatic stellate cell IgA IgD IgA. None None notebook None None None None None 2024-10-20 16:21:25.594835+00:00 1
8 biOieq3zmYvd0000 None True Intermediate Skeletal Muscle Cell Uterus resea... None None notebook None None None None None 2024-10-20 16:21:25.595142+00:00 1
19 Gb9skcCgh0mp0000 None True Research IgE IgM research IgD IgM. None None notebook None None None None None 2024-10-20 16:21:25.595811+00:00 1
38 CXemohar4GwZ0000 None True Study Keratinocyte IgG3 IgM Keratinocyte resea... None None notebook None None None None None 2024-10-20 16:21:25.596992+00:00 1
39 JcCRg6H8dcc50000 None True Research Intermediate skeletal muscle cell IgG... None None notebook None None None None None 2024-10-20 16:21:25.597053+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
3 qKcZNM9rFr2q0000 None True Research Pancreatic stellate cell IgA IgD IgA. None None notebook None None None None None 2024-10-20 16:21:25.594835+00:00 1
8 biOieq3zmYvd0000 None True Intermediate Skeletal Muscle Cell Uterus resea... None None notebook None None None None None 2024-10-20 16:21:25.595142+00:00 1
19 Gb9skcCgh0mp0000 None True Research IgE IgM research IgD IgM. None None notebook None None None None None 2024-10-20 16:21:25.595811+00:00 1
38 CXemohar4GwZ0000 None True Study Keratinocyte IgG3 IgM Keratinocyte resea... None None notebook None None None None None 2024-10-20 16:21:25.596992+00:00 1
39 JcCRg6H8dcc50000 None True Research Intermediate skeletal muscle cell IgG... None None notebook None None None None None 2024-10-20 16:21:25.597053+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
3 qKcZNM9rFr2q0000 None True Research Pancreatic stellate cell IgA IgD IgA. None None notebook None None None None None 2024-10-20 16:21:25.594835+00:00 1
19 Gb9skcCgh0mp0000 None True Research IgE IgM research IgD IgM. None None notebook None None None None None 2024-10-20 16:21:25.595811+00:00 1
39 JcCRg6H8dcc50000 None True Research Intermediate skeletal muscle cell IgG... None None notebook None None None None None 2024-10-20 16:21:25.597053+00:00 1
73 zOzJSIPGUPnf0000 None True Research classify Uterus visualize IgG. None None notebook None None None None None 2024-10-20 16:21:25.602134+00:00 1
95 FbQN9aXQn1xU0000 None True Research Bartholin's gland Granulosa lutein ce... None None notebook None None None None None 2024-10-20 16:21:25.603444+00:00 1
133 MOlqvaRKagGU0000 None True Research IgG IgD investigate. None None notebook None None None None None 2024-10-20 16:21:25.608198+00:00 1
181 IzJNtw4R8GoA0000 None True Research Cochlea Interstitium Epsilon cell IgG... None None notebook None None None None None 2024-10-20 16:21:25.611071+00:00 1
231 6JUbtLJLKk4e0000 None True Research visualize IgA Outer hair cells. None None notebook None None None None None 2024-10-20 16:21:25.617224+00:00 1
329 mNo3oZ0AlY5b0000 None True Research Uterus IgM Bartholin's gland IgG2. None None notebook None None None None None 2024-10-20 16:21:25.625563+00:00 1
371 bIH2ReRLTJV10000 None True Research IgE Lymphatic vessel IgA. None None notebook None None None None None 2024-10-20 16:21:25.630586+00:00 1
455 7X0Zt5xubZS80000 None True Research Uterus Bartholin's gland IgG2. None None notebook None None None None None 2024-10-20 16:21:25.638103+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 P4684TH5GuNoBI1U0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-20 16:21:23.650055+00:00 1
3 bies9mwWlY7srbdv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-20 16:21:23.982392+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 h7AnhVaYlbG7GmrN0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-20 16:21:23.975189+00:00 1
3 bies9mwWlY7srbdv0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-20 16:21:23.982392+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries